From Single to Multi-document Summarization: A Prototype System and its Evaluation

نویسندگان

  • Chin-Yew Lin
  • Eduard Hovy
چکیده

NeATS is a multi-document summarization system that attempts to extract relevant or interesting portions from a set of documents about some topic and present them in coherent order. NeATS is among the best performers in the large scale summarization evaluation DUC-01.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

Text Summarization based on Itemized Sentences and Similar Parts Detection between Documents

In this paper, we propose a text summarization system for a single document and multiple documents. The system for a single one extracts sentences from a document and itemizes them to generate a summary. We applied this mechanism for Task A (single document summarization). We also utilized this mechanism for multi-document summarization (Task B) except for itemization mechanism. The system for ...

متن کامل

Centroid-based summarization of multiple documents: sentence extraction utility-based evaluation, and user studies

We present a multi-document summarizer, called MEAD, which generates summaries using cluster centroids produced by a topic detection and tracking system. We also describe two new techniques, based on sentence utility and subsumption, which we have applied to the evaluation of both single and multiple document summaries. Finally, we describe two user studies that test our models of multi-documen...

متن کامل

Centroid-based summarization of multiple documents

We present a multi-document summarizer, MEAD, which generates summaries using cluster centroids produced by a topic detection and tracking system. We describe two new techniques, a centroid-based summarizer, and an evaluation scheme based on sentence utility and subsumption. We have applied this evaluation to both single and multiple document summaries. Finally, we describe two user studies tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002